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Imaging Algorithms for a Strip-Map Synthetic
Aperture Sonar: Minimizing the Effects of

Aperture Errors and Aperture Undersampling
Peter T. Gough and David W. Hawkins

Abstract—Imaging the sea floor using high-precision synthetic
aperture sonar (SAS) techniques is now at the stage where the
efficiency and the robustness of the various imaging algorithms
are of concern. There have been several block processing algo-
rithms developed for relatively narrow-band-, narrow swath-, and
narrow beamwidth synthetic aperture systems mainly for use by
the synthetic aperture radar (SAR) community. These algorithms
are summarized and their relevance to the slower speed of
propagation, broad-band, broad swath-, and broad beam-width
sonar equivalents are noted.

Additional algorithms intended to ameliorate distortions in-
jected by motion errors of the tow fish and medium turbulence
are also assessed. One of the significant differences between the
sonar and radar systems is that most synthetic aperture sonars
travel faster than that required to meet the spatial sampling crite-
rion and so the aperture is under- or insufficiently sampled. The
digital spotlighting approach can be shown to reduce the grating-
lobe images generated by this undersampling to a significant
degree.

The operational effectiveness of these various algorithms are
shown on real data as collected by an ocean-going, boat-towed,
rather than a rail or otherwise guided, sonar. What is important
is that these algorithms in various combinations can ultimately
produce near diffraction-limited imaging on real data. Typical
results are shown when using the Kiwi-SAS to image point retro-
reflectors (either as isolated targets or deployed in pairs) on a
sea floor of bland silt. To date, no unclassified SAR or SAS uses
the range or along-track spatial bandwidths employed by the
Kiwi-SAS. The final SAS image resolution of 16 cm� 5 cm is
a considerablely finer resolution than achieved by any SAR of
equivalent carrier wavelength. The fine resolution is due to the
correspondingly high spatial bandwidths covered by the system;
that of range due to the chirp bandwidth coupled with the slow
speed of sound in water and that of along-track due to the small
real apertures employed. Access to this wide spatial bandwidth
makes the applicability of normal SAR algorithms uncertain and
we explore some of the trade-offs.

Index Terms—Sonar, sonar array, sonar imaging/mapping,
sonar signal processing, synthetic aperture imaging, synthetic
aperture sonar.

I. INTRODUCTION

T HE sequence of echoes detected by an active synthetic
aperture radar (SAR) or synthetic aperture sonar (SAS)

are coherently added in an appropriate way to produce an
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image with greatly enhanced resolution in the azimuth, or
along-track, direction when compared with the image obtained
from a standard side-looking radar or sonar. The received
echoes are essentially a mapping of the two-dimensional (2-
D) terrain reflectivity modulated by the transmitted signal and
delayed in time by the appropriate amounts. The received
echoes are also modulated by the movement of the platform
between transmitted pulses. The movement of the platform
along the track gives the echoes a hyperbolic phase history
in azimuth which is similar to a linear frequency chirp in
spatial coordinates. As a consequence, this spatial modulation
is often called a Doppler modulation. It is this spatial Doppler
modulation of the received waveform that enables the various
SAR and SAS imaging algorithms to produce images with
such enhanced azimuth resolution.

The first real-time synthetic aperture processor was for
airborne radar and was based on Wiley’s 1952 unfocused
Doppler beam sharpening (DBS) concept [31]. This idea
exploits the fact that a repeated transmission of an FM
pulse gives a signal with discrete spectral lines spaced by
the pulse repetition frequency (PRF). The discrete nature
of the spectrum means that temporal Doppler shifts that
lie within the PRF/2 of a spectral line can be measured
quite accurately [3]. The Doppler shifts exploited by DBS
are due to Doppler effectsbetweenpulses and represent
relative platform-target speeds, Doppler shiftswithin pulses
due to movement during pulse transmission are ignored. The
inversion of the DBS data to produce high resolution images
can be termed avelocity-inducedSAR [27]. The original DBS
concept was based on a plane-wave assumption similar to
that now used in the tomographic formulation of spotlight
SAR, and because of this assumption, DBS suffers from an
impairment known asmotion through resolution cells[1],
[5]. The approximation-free FM–CW SAR inversion scheme
recently developed [27] does not suffer from this problem and
is a complete generalization of the original DBS scheme. (This
work also shows the equivalence of the FM–CW formulation
and of the range-Doppler and wavenumber SAR inversion
schemes used in this paper.)

The first fully focusedspatially inducedSAR system was
proposed in 1953 [25]. Spatially induced synthetic aperture
processing is based on the idea that a sequence of pulses
recorded from a single moving real aperture can, with suitable
computation, be treated as the output of a much longer array.
When this synthetic array is focused, it can achieve an along-
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track resolution that is independent of range and wavelength
and dependent only on the physical size of the real aper-
ture. However, at that time, the computational load exceeded
existing capabilities so the pulse echo data was recorded
coherently and the inversion to high-resolution imagery used
a ground-based processor. Other spatially induced focused
SAR systems were developed independently [12] and it was
these publications that first coined the termsynthetic aperture
radar; now universally known as SAR. The most well-known
inversion algorithm for the early spatially induced SAR was
“computed” optically using a sophisticated system of spherical,
cylindrical, and conical sectioned lenses [13], nicely reviewed
in [28]. As the phase histories of the demodulated echoes
were recorded on a continuously scrolling film during the
fly-past, the film, after it was developed, could be coherently
illuminated and used as the input to the optical system. Aside
from the cost of the optical system, disadvantages include a
low signal-to-noise ratio (SNR) in the recorded data along
with all the noise problems inherent in any coherent optical
system. The first digital-based processor marked the start of
the modern SAR era [11], [19], [20]. Most of these schemes
assume the data is recorded in a 2-D matrix of pulse echoes
arranged into the following format.

Assuming only a single channel detector, the signal received
is a continuous one-dimensional (1-D) stream of coherently
summed pulse echoes, each echo being a scaled replica of the
transmitted waveform. Unless the transmitted signal is already
a short pulse waveform, synthetic aperture algorithms usually
time- or range-compress the incoming echoes by correlating
them against the transmitted waveform. They then reorder the
1-D time-compressed echoes into 2-D coordinates of along-
track distance and delay time where discrete increments
in along-track correspond to the distance moved along the
track between pulse repetition periods . The time or
range compression is sometimes done after the 1-D to 2-
D reordering process and provided care is taken to ensure
that reflecting objects at the extreme edge of the maximum
unambiguous range are not truncated, the actual sequence of
compression and reordering is immaterial. The 1-D to 2-D
reordering operation produces what is frequently referred to as
the data spacein the domain (or sometimes referred to
as thecompressed range/azimuth domain). With the temporal
coordinate delay time scaled to the spatial coordinate of
range (or cross-track), the data space is converted to a raw
image in the coordinates of rangeand along-track which
is the normal output of side-looking/side-scan sonars. The
along-track coordinate is always discrete whereas the range
coordinate may be continuous or discrete. The raw image
is at best a poor representation of the sea floor reflectivity
and is characterized by the almost parabolic appearance of
point targets, the parabola getting more and more extended in
azimuth as the reflecting point targets are located further and
further away from the aperture.

The significant part of most synthetic aperture algorithms
starts from the function as recorded in data space. The most
accurate and inefficient of these algorithms being a point
by point, brute force correlation of the function recorded
in data space with the appropriate point spread function for

the point under consideration. This has been called theexact
reconstruction algorithm. As the correlation is a point-spread
variant computation, very little can be gained in the way
of array or bulk (usually Fourier) processing without some
approximations. Depending on the type of approximation,
there are a host of reconstruction algorithms with a variety of
names; the two most well-known are therange-Dopplerand
thewavenumberreconstruction algorithms [2]. A fundamental
problem with many of the algorithms, and their derivatives,
is the necessity to change the variables in a nonlinear way
which, when using sampled data, means interpolation from
one sampling grid to another. Unfortunately, the interpolation
itself is costly in computing resources and injects phase
and amplitude errors into the process. Some, such as the
chirp-scaling algorithm [22], have been written to do the
interpolation in an alternative form (usually by multiplication
in an equivalent frequency domain) to avoid brute force grid-
to-grid interpolation.

Regardless of the method of grid-to-grid interpolation, there
are still two major problems limiting the widespread use of
SAS. These are the image blurring caused by imperfect motion
compensation resulting in aperture errors and the generation
of artifacts caused by undersampling along the aperture.

A. Aperture Errors

When the sonar moves down the track, the locus is seldom
perfectly straight. Many SAS and SAR have on-board inertial
navigation systems to compensate for gross departures from
the straight locus, but still, minor residual errors corrupt the
detected echoes. In the SAR community, there are three main
autofocusing algorithms that are routinely used to remove
these residual errors.Contrast optimizationalgorithms [4], [21]
determine the final focused image on the basis that the image
with highest contrast is the optimal image. The algorithms
perform a trial-and-error search on the along-track chirp rate
and Doppler centroid, parameters which are related to the
along-track instantaneous velocity and squint angle of the
synthetic aperture system.Map-drift or multilook registration
algorithms [11], [21] are based on the correlation of multilook
images. Usually, the raw data is filtered in along-track into a
number of “looks” with each look corresponding to a certain
bandwidth of the along-track Doppler wavenumber. Each of
these Doppler sections corresponds to a different look at the
object field. When each look is focused, we get a set of
images with each of these images having a reduced along-track
resolution. The low-resolution image generated from each
look will overlay exactly if the optimal spatial chirp rate and
Doppler centroid have been chosen correctly in the along-track
or azimuth focusing section of the processing algorithm. These
low-resolution images may be added coherently (provided
the sampling of each image is increased before the coherent
addition) to produce a maximum-resolution image. The more
usual alternative is to add them noncoherently to produce a
lower resolution image with greatly reduced speckle. However,
if the spatial chirp rate is incorrect or other parameters used by
the algorithm were in error, the resulting low-resolution images
are displaced relative to each other. The amount of image
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displacement can be measured by cross-correlating each of the
low-resolution images, and these displacements used to obtain
an estimate of the parameter error.Phase gradient autofocus
(PGA) [14], [18], [29] is typically used in the processing
of spotlight-SAR images but has recently been adapted for
strip-map systems [30]. PGA models the along-track error
as a phase-only function of the Doppler wavenumber in the
range-Doppler domain. By using redundancy over range in
the image, an estimate of this phase error can be obtained and
removed from the image. All of these algorithms are iterative
in nature with the fastest algorithm, straight PGA with no
enhancements, typically converging in 2–3 iterations.

B. Aperture Undersampling

A major advantage of airborne radar systems over equiva-
lent sonar systems is that the high speed of light relative to
platform velocity allows the along-track dimension of SAR
recordings of data space to be well sampled. (This is not
always the case in space-borne SAR.) In sonar, the low
propagation speed of sound causes this sampling requirement
to be in conflict with the need for the sonar to travel as fast
as possible to maximize the mapping rate. This leads to the
second of the two problems limiting the widespread use of
SAS: aperture undersampling.

When the sonar moves down the track and, for this particular
section, we assume without motion error, the aperture is
always sampled by the sonar. A strip-map SAS (i.e., a sonar
without transducer beam-steering) has a simple formula that
specifies the appropriate distance between samples that will
result in an image virtually free of artifacts, and this is related
to the physical size of the radiating and receiving transducers,
viz.,

(1)

(2)

where is the distance between samples along the aper-
ture, is the along-track resolution in the ground plane
reflectivity function, and where is the size of the largest
transducer. This means that the sonar can travel no more than

between pulses and, for anything but a very short range
sonar, this implies a very low platform speed and consequential
mapping rate. If the sonar travels at

(3)

where is the velocity, then the aperture is no longer appro-
priately sampled (i.e., since ) and the reconstructed
beam pattern of the synthetic aperture has grating lobes. This
sampling rate is correctly stated as whereas many SAR
references incorrectly state . Appendix A explains the
origin of this confusion and a complete mathematical analysis
of the system model also results in a aperture sampling
requirement [27, p. 293]. Airborne SAR’s do not have a
problem satisfying this aperture sampling criterion; however, it
is often relaxed for space-borne SAR in a tradeoff of dynamic
range for an increased mapping rate [11, p. 298]. The tradeoff

is parameterized using what is known as the along-track-
ambiguity-to-signal ratio (AASR). Systems sampled at
that only process 70% of the Doppler bandwidth available
typically have an AASR of 20 dB. This figure is considered
adequate for most space-borne SAR imaging applications. As a
consequence, a single strong reflecting target often reconstructs
to multiple images in along-track and this has been noticed
in SAR images of strong targets surrounded by low-contrast
backgrounds [11, p. 299] and also in similar contrasted SAS
images [23]. We call the extra ambiguous images grating-lobe
images. There are some circumstances where the grating-lobe
images can be minimized by suitable computation; however,
it should be realized that once a strip-map SAS recording
has been undersampled along the aperture, there are very few
options available; the missing data cannot be retrieved without
errors, approximations, ora priori information.

II. BASIC SAS SYSTEM MODEL

Consider a continuous 2-D distribution of omnidirectional
reflecting targets on the sea floor described by a complex
object reflectivity function (where the utility of the
double notation will eventually become clear). The sea floor
is insonified by a side-looking sonar traveling along a straight
locus having a velocity , flying meters directly above and
parallel to the axis located in the plane of the sea floor. For
simplicity, let , which implies that the sonar platform
is flying very nearly in the plane of the object. The sonar
transmits a waveform of duration which repeats every

. Obviously, . It is usual to arrange the recorded
echoes into a 2-D representation of distance along the aperture

and echo delay time from the start of the current pulseto
give

(4)

For simplicity, we have absorbed all amplitude spreading
losses into our definition of and we deliberately
ignore the convolutions necessary to account for the finite
size of the real transmitting and receiving apertures as this
has been dealt with at some length elsewhere [15]. Since
almost all sonars use a waveform with some form of coding
or frequency chirp, is still not readily interpretable
and it is normal to pulse- or range-compress this signal by
correlating it with the unit waveform to produce a 2-D
range-compressed presentation. This is thedata spaceor the
compressed range/azimuth domain, given by

(5)

where represents 1-D correlation and
which represents the time- or range-compressed pulse. For
most modern sonars, is often no more than a few cycles
of the nominal center frequency in extent.
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The appearance of is of a collection of parabolas,
one parabola for each reflecting point in , that become
more extended as the time delay (i.e., the range) increases. The
extent to which a single point in maps into an almost
parabolic locus which covers several range cells is called
range curvatureor range migration. Unfortunately, each range
has a different amount of range curvature which makes the
reconstruction of from far from trivial. With
one notable exception (the chirp-scaling algorithm), synthetic
aperture imaging algorithms start with (5) and proceed to
estimate to the diffraction limit of the system.

Before we discuss the various imaging algorithms, it is
helpful to see the relationship of the 2-D Fourier transform of

to . First a 1-D transform of from
time to temporal frequency gives

(6)

where and is the Fourier transform of
the compressed pulse . Using the principle of stationary
phase, given by (6) is followed by a further 1-
D Fourier transform from space to spatial frequency or
Doppler wavenumber to give the transfer function of the
data recording [27] (see Appendix B) as

(7)

Now with a change of coordinates inside the integrals given by

(8)

(9)

Note that now the coordinates of and and
those of are different. The implications of the
coordinate warping between the and domains
will be referred to later in this paper.

III. I MAGING ALGORITHMS FOR STRIP-MAP SAR’S

The object of any SA image reconstruction algorithm is to
estimate the magnitude of the object’s complex reflectivity
function from to the diffraction limit im-
posed by the real aperture(s) used and the bandwidth of the
transmitted pulse.

Many of these algorithms have been developed by the SAR
community and so are optimized for the various SAR systems
and geometries. These SAR systems are usually characterized
by narrow bandwidth transmissions (cf. most SAR having
megahertz bandwidths at gighertz carriers with the SAS having
kilohertz of bandwidth at kHz center frequencies). A second

TABLE I
REPRESENTATIVE PARAMETERS OF SEASAT, ACOUSTICAL

IMAGING DEVELOPMENT (ACID) SONAR AND KIWI-SAS

significant difference are the speeds of propagation (cf., 310
m/s with 1500 m/s) and the platform velocities (cf. spaceborn
SAR up to 7500 m/s with SAS up to 10 m/s but usually
around 1 m/s). Also, the ratio of swath width to average slant
range is very different (cf., spaceborn SAR 50–100 km at 900
km with SAS 500 m at 500 m). Finally, the beamwidths and
squint angles are often very different (cf., SAR having a 1
beamwidth at up to 8 squint with SAS 10 at broadside).
Even with such narrow beamwidths, the dwell time of a SAR
over a target is typically several thousand pulse repetitions,
whereas a SAS is lucky to have a few hundred. All of these
practical details need to be considered when evaluating the
usefulness of the following algorithms to SAS. A comparison
of the operational parameters of a satellite SAR (Seasat) with
two ocean-going, cable-towed SAS systems is given in Table I.

A. The Exact and Exact Transfer Function Algorithms [2], [8]

The simplest algorithm is known as theexact image re-
construction algorithm and it is the only purely time-domain
algorithm. Since each point reflector in produces
a unique hyperbolic locus in the domain, it is pos-
sible to do brute force correlation of against a
continuous point reflector function calculated
for the particular point under consideration . Since the
data is sampled and the point reflector function describing
the hyperbolic locus is continuous, interpolating functions
are needed, which means this algorithm is very slow and
seldom used for anything but calibration. The simplest of
the Fourier-based algorithms is theexact transfer function
algorithm. The recorded data is first Fourier-transformed in
2-D to the domain and then multiplied by the
complex conjugate of the hypothetical for
a single point at . The inverse Fourier transform gives
the reflectivity of the point in the object domain.

In effect, the exact and exact transfer function algorithms are
identical to a beam-forming process for each pixel in the final
image. This individual pixel beam-forming technique has been
the basis for most of the previous SAS prototypes reported in
the unclassified literature.
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A common modification of the exact transfer function
algorithm is to use a common for pixels
within the same depth of focus. Unfortunately, this injects
phase errors into the reconstructed image, and while phase
preservation has not been an issue with previous SAS imaging
systems, interferometric and bathymetric SAS, as well as
those that use autofocus to correct aperture errors, all require
deterministic phase errors to be eliminated from the image.
So despite the efficiency gains of the nonphase preserving
version of the exact transfer function algorithm, a new type
of algorithm is required when a full-phase preserving strip-
map image reconstruction is needed. For that, the complete
global point variant nature of the recorded data must be
accommodated.

B. The Range-Doppler Algorithm [2], [8], [19]

The first of these to be developed was therange-Doppler
algorithm. This algorithm starts with a 1-D Fourier transform
of from a coordinate of along-track distanceto
along-track/Doppler wavenumber producing what is known
as the range-Doppler domain . In this domain, the
variation in delay time (range) migration with is removed
by a simple coordinate remapping of the sampled data (some-
times called reformatting) before azimuth compression by a
phase-only inverse of the spatial Doppler chirp. The major
advantage is that since each range pixel has a similar phase
history (but displaced in position along the aperture), a single
compression in the range-Doppler domain applies to all pixels
at the same range. Thus the processing has progressed from
a point-by-point computation in the exact and exact transfer
function algorithms to a [range] line-by-line computation.

In beam-forming parlance, the convolutional nature of the
SA model in the along-track direction implies that beam-
forming parameters are the same for any pixel at the same
range and so the focusing can be performed simultaneously
for a range line of pixels. The beam-forming equivalent of
coordinate reformatting is implemented by phase shifting and
summing networks and if the phase information is to be
preserved, each image pixel must have its own unique set of
beam–forming parameters. In an effort to improve efficiency,
the same beam-forming parameters are often used to focus
all the pixels within a depth of focus. Unfortunately, this
commonly used technique is not phase preserving and so
cannot be used when subsequent processing such as autofocus
is required.

In systems where the range cell migration is less than 1/3 of
a range resolution cell, we can use theFresnel approximation
algorithm. The range-Doppler algorithm normally requires
precise interpolation as part of the coordinate remapping. If
the range migration is small, as is typical for an airborne SAR
system, this step can be dispensed with and so the Fresnel
approximation algorithm becomes no more than two 1-D
Fourier transforms with an intermediate phase multiplication
for every range line of pixels.

Additional complications arise when the squint angle or the
spatial bandwidths in both range and Doppler of the physical
apertures are sufficiently large that the range chirp is no longer

constant, with the Doppler wavenumber. In this situation,
there is an extra -dependent LFM component in the range
chirp, and what is known as secondary range compression
(SRC) is needed [2].

To our knowledge, no true wide-bandwidth range-Doppler
algorithm has been used on SAS data and this Fourier-based
algorithm represents a far more efficient method for producing
SAS images than the “exact” algorithms.

C. The Wavenumber Algorithm [2], [6], [7], [22], [26]

SAR processing algorithms based on thewavenumberor
range migration or seismic wave equation formulation have
formed the basis of the next generation of highly efficient
SAR processors. Basically the raw or range-compressed data
space in is 2-D Fourier transformed into the tem-
poral frequency/wavenumber domain in the coordinates of

. Given that the transfer function of the data collection
process is given by (9), the matched filter wavenumber image-
reconstruction algorithm can be neatly summarized by

(10)

where the coordinate reformatting (the Stolt mapping) is
given by (8). Thus, we have progressed from a point-by-point
algorithm (the exact) to a line-by-line (the range-Doppler) to
a block-by-block (the wavenumber). As a matter of practical
detail, the Stolt mapping from the ( ) to the ( )
domain involves precise interpolation with sampled data and,
as the center of the illuminated footprint is well offset from
the origin of coordinates, varies rapidly. A more
practical algorithm to implement with sampled data is

(11)

where is the distance from the center of the aperture to
the center of the illuminated object domain and would be
considered the average cross-track of the illuminated object.
It should be noted that the various phase functions in (11) are
appropriate for coordinate systems that have time and range
ordinates defined from the aperture. Different phase functions
would be necessary for systems with coordinates defined from
the center of the object, for instance [2], [26].

The exponential inside the Stolt map in (11) represents a
spatial shift that performs an analogous process to that of
carrier removal in the demodulation of a spectrum. The phase
multiplication moves the entire swath down to the origin of
spatial coordinates in the same way demodulation moves a
spectrum to baseband. Interpolation can now be performed
over slowly varying quantities and so the interpolation is more
likely to be successful. Using the beam-forming analogy, the
exponential inside the operator achieves the focusing for pixels
at while the Stolt mapping achieves focusing for ranges
other than .
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Even with this modification, the algorithm is still relatively
inefficient due to the need for interpolation, so in that regard
the wavenumber algorithm is no better than the range-Doppler
algorithm.

An interesting variant of the wavenumber algorithm is the
FM–CW algorithm. Both end up by calculating the 2-D Fourier
transform of the measured pulse echoes. The
wavenumber algorithm segments the incoming pulse echoes
into the 2-D matrix we have described as and then
does a 2-D Fourier transform on it to get . The
FM–CW algorithm takes one long 1-D Fourier transform of all
the incoming pulse echoes and then segments the vector result
of the 1-D transformation into a 2-D matrix. Either way, we
end up with the same and in all other respects the
remainder of the reconstruction algorithms are the same [27].

Efficient derivatives of the wavenumber algorithm can be
used if the swath width is small compared to the average
cross-track and if the bandwidth is small compared with
the center frequency [2]. For these derivative algorithms, the
interpolation process in the domain is replaced by
phase multiplication in the domain, thus avoiding in-
terpolation. Although the restrictions of swath- and bandwidth
are frequently true in SAR systems, they are seldom true in
SAS systems, which renders these derivative algorithms of
lesser interest to the sonar community.

D. The Chirp-Scaling Algorithm [7], [10], [22], [24]

Rather than start with the range-compressed data, ,
as most SAR algorithms typically do, thechirp-scaling al-
gorithm starts with the raw echo data, as defined
in (4). The chirp-scaling algorithm exploits the linear FM
(LFM) signal structure of the transmitted pulse. If coded
or pseudorandom sequences have been employed for the
transmitted pulse, the raw data will need to first be range-
compressed with the appropriate deconvolving function, then
respread by a convolution with a LFM pulse.

Now recall that the range-Doppler algorithm removes a
range migration time delay in the domain to bring
all the Doppler loci spread in and to 1-D lines spread
in only. As this time delay is not constant with, the

-dependent time-delay subtraction is done by time-domain
interpolation, which can be expensive and error inducing if
not done accurately. The chirp-scaling algorithm does the
equivalent of this operation in the uncompressed range or
range signal/Doppler wavenumber domain. How it
does so is quite clever.

The chirp-scaling algorithm starts with a 1-D Fourier trans-
form in along-track of the raw echo data, , the resultant

is then multiplied by a mild phase-only frequency
chirp which scales the range chirp for each and just
enough so that the Doppler loci of all reflecting targets end up
with a common range migration in phase (but not amplitude).
The scaled data is then range-Fourier-transformed into the

domain where bulk range migration correction, pulse
compression, and SRC is performed. These compressions and
corrections leave a residual phase function which is then
removed in the domain along with the overall azimuth

compression, followed by a transformation back into the
domain. Finally, coordinate rescaling gives our estimate of the
diffraction limited image .

E. Secondary Range Compression [11], [19]

Although the wavenumber algorithm is “exact” in that it
contains no approximations and so is good for any wavelength,
bandwidth, beamwidth, or swath width; the range-Doppler
and the chirp-scaling algorithms both have inherent approx-
imations and when the span of spatial bandwidths gets large
enough or the system is highly squinted, the effect of these
approximations needs to be corrected. The most well known
of these correction factors is the secondary range compression
(SRC).

Some extensive simulations using our system parameters
have shown us that there is little visual difference in the images
produced by the range-Doppler and chirp-scaling algorithms
with or without SRC. The peak-signal-to-side-lobe ratio is
almost unchanged at 12 dB, and if the spatial wavenumber
domain is calculated using a Hamming weighting function

, the side lobes go down to 40 dB. So the
question needs to be asked, “why use SRC at all as it would
appear to add an unnecessary computational load?”

The answer lies in thephase of the diffraction-limited
image. Normally this is of little interest as only the modulus or
intensity of the image is displayed, but ifanyform of autofocus
such as PGA is needed to correct for aperture errors or medium
turbulence, this phase is critical whether we can “see” it in the
uncorrected diffraction-limited image or not. It is important in
autofocus algorithms to have the residual phase errors due to
the image-forming algorithm as small as possible, and as SRC
is a deterministic phase correction, little is lost by computing it
for every image and a lot is gained if some form of autofocus
is shown to be necessary.

F. Algorithm Summary

The wavenumber algorithm represents the exact inver-
sion of the SA system model. If high-order interpolators
are used, then the final image is the “best” possible of
all possible images. The range-Doppler and chirp-scaling
algorithm represent an approximate inversion of the system
model and with the inclusion of SRC, the approximation has
only a minimal impact on the final image quality. The range-
Doppler and chirp-scaling algorithms produce images that are
indistinguishable. In terms of efficiency, the range-Doppler and
wavenumber algorithms perform comparably. This is because
both algorithms require an interpolator to operate on the same
volume of data; however, the chirp-scaling algorithm out
performs both of these algorithms by a small margin. When a
Hamming weighting function is applied to the
windowed wavenumber data , all the algorithms
produce identical images (even without SRC the loss in peak
height and the rise in side lobe levels is minor) for the Kiwi-
SAS parameters. Recent analysis and simulations have shown
us that a modification to the chirp-scaling algorithm improves
its efficiency dramatically, and this will be the subject of a
forthcoming publication [16].
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IV. I MAGE RECOVERY WITH RESIDUAL MOTION ERRORS

As the sonar “flies” down the track, motion errors and
turbulence insert timing errors into the recorded echoes. With
suitable tow fish design and perhaps some inertial navigation
equipment, these errors can be reduced to a fraction of a
period at the mean frequency. However, this still may not
be good enough for image reconstruction of from

(which is no more than with the residual
positional/timing errors included). So, given that there are
residual timing errors and these are to be estimated and
removed, there appear to be two approaches. The first is to
make an initial estimate of the image which includes
all the errors and iterate toward an “error-free” image based
on some convergence criterion. Let us call this the image-
compensation approach. The second is to estimate the actual
timing error as a function of distance along the apertureand
remove these errors before the synthetic aperture processing
begins. Let us call this the aperture-compensation approach.

A. Image-Compensation Algorithms

The image-compensation approach begins by calculating
from [or ] using whatever synthetic

aperture algorithm is deemed appropriate and then iterates
around using some criterion to force it to converge
to . The most successful of these algorithms is called
phase gradient auto focus(PGA). The algorithm’s name is due
to the fact that it averages the phase difference (gradient) of the
along-track Fourier transform of selected targets to determine
the aperture error [14], [18], [29].

1) PGA for Spotlight Systems:With the notation we’ve
chosen, the PGA model of the corrupted scene is given by,

(12)

where the effect of the timing error is modeled as a convolution
in the along-track direction [14], [18], [29]. The use of a
convolution implies that the scene is distorted by the same
point spread function.

The following development is appropriate for spotlight-
SAR, which is what the PGA algorithm was initially designed
to focus; after explaining the spotlight operation of this algo-
rithm we will indicate the modifications required for strip-map
operation. Fourier transforming (12) in along-trackgives

(13)

if the scene consisted of a noisefree distribution of point
reflectors where there was only one target along anyconstant
line, then the phase of along any constant
will consist of a linear component due to a target’s offset
from , plus the phase error. The PGA algorithm
determines this phase error by proceeding as follows: in
the target scene, , the strongest targets are shifted
to the aperture center, 0 m, the weaker targets are
removed, and the resulting matrix is called . A Fourier
transform with respect to gives , the phase of
which (in the noise-free case) consists of only the phase error
as the shifting operation has removed the linear components

due to target location. Using , the gradient of
the phase error is determined. This gradient is then
integrated and the complex conjugate of the phase error,

, is applied to which is then inverse-
Fourier-transformed with respect toto give a new estimate
of the image. The algorithm iterates until some form of
convergence criteria is reached, e.g., this criteria can be based
on window size or the size of the phase error detected.

2) PGA for Strip-Map Systems:The convolution assump-
tion in (12) is unwarranted for strip-map systems. Basically,
(12) assumes that all parts of the image have suffered the same
distortion, i.e., they have been created using exactly the same
aperture. In a strip-map system, targets at different along-track
positions subtend different portions of the aperture traversed
by the sonar and so they are subject to different distorting
functions. As well, for broad swath-width systems, targets at
minimum range have only a small portion of their synthetic
aperture in common with targets at the maximum range and so
they too show different realizations of the aperture-distorting
function even though the targets may be at the same along-
track position.

Recently, modifications to the PGA algorithm have shown
that it is possible to do image compensation for strip-map
SAR [29]. Although the modifications were promulgated for a
narrow swath-width system where the subapertures for all the
reflecting targets are of the same extent even if not covering
the same part of the full along-track aperture, the technique
can be applied to wide swath-width SAS systems where the
subapertures increase in length for targets at greater ranges.

The starting point for the strip-map PGA is also
and again the strongest targets in the image are selected.
However, the spotlight-PGA step of shifting the strong targets
to the center of the along-track aperture is replaced by a
convolution in along-track with the spatial chirp appropriate
to the range of the target currently under consideration. Now
the phase differential of this new function cannot be averaged
with that of the other targets directly as they cover different
parts of the full along-track aperture, and as well there is an
unknown phase shift between each subaperture. Consequently,

it is the seconddifferential of the phase function that is
averaged over all the strong targets and then finally integrated
twice, by whatever method is deemed appropriate, to get our
distorting phase function .

B. Aperture Compensation Algorithms

Looking at the aperture-compensation approach in a little
more detail, we first make the assumption that the synthetic
aperture (along-track distance) is sampled at as required
by the spatial sampling criterion. Let us also assume that the
timing error is constant for the duration of a single pulse
so that the timing error can be described as a function of

alone. Consequently, instead of measuring , we
measure where we model the error as

(14)

Note that this assumption is quite different from that used by
PGA [as defined in (12)] and has the added advantage that it
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is applicable to strip-map and broad swath-width systems as
well as spotlight and/or narrow swath-width systems.

To perform the inversion given by (10) or (11), we require

(15)

where is the along-track Fourier transform of the
error function. Because convolution is not distributive, the
matched filtering and Stolt mapping given by (10) or (11)
when applied to (15) does not result in simply a bandlimited
version of multiplied with a blurring function.
Any motion-compensation algorithm that attempts to estimate
the timing errors will be limited by how closely the inversion
of (15) can be modeled as a convolution. The only algorithm
that successfully does this is the PGA algorithm. The other
autofocusing algorithms mentioned in Section I-A can only
determine the equivalent of a low-order polynomial fit to the
aperture error, whereas PGA can determine errors up to the
along-track folding frequency.

V. IMAGE RECOVERY WITH UNDERSAMPLED

APERTURES: DIGITAL SPOTLIGHTING

Up till now, we have tacitly implied that is known
continuously along both axes. Although this could conceivably
be true along the delay time axis[for instance, we could have
used analog delay lines to produce from ], it
is not true and never can be true along the aperture axis.
We can make the sampling nature of theaxis more specific
by stating

(16)

where is an integer. Provided is small enough (i.e.,
), the sampling along the apertureis adequate

to meet the appropriate sampling criterion. Thus,
and are not aliased in Doppler wavenumber
and we can follow any one of the usual algorithmic paths to
calculate and so reconstruct an estimate of the
object reflectivity .

However, when we travel too fast (i.e., ),
the appropriate sampling criterion is not met and spatial
undersampling in the direction occurs. Although

for is still a correct statement, and
are aliased in Doppler wavenumber and so

is corrupted by grating-lobe images if we use any of
the normal reconstruction algorithms.

Unfortunately and for the reasons noted in the introduc-
tion, there is usually a commercial or operational necessity
to travel much faster than the maximum speed allowed to
meet the spatial sampling criterion. In this case, the aperture
is undersampled and we lose valuable information. Unless
that information can be recovered using some othera priori
information, there is little that can be done. However, thea
priori information can often impose quite powerful constraints.
Let us presuppose that the sonar is being used in the mine-
hunting or a harbor-clearance environment where we know
that objects of interest are limited to 4 m in extent. Under

these conditions, we can perform what is known from the
SAR literature as digital spotlighting and, using it, we can
recover an image of limited extent as though the aperture was
properly sampled.

To see how digital spotlighting works, consider a target
of limited extent in the plane which is centered about

and, by limited, we mean considerably smaller than
the extent of the synthetic aperture and lying within one depth
of focus. This target of limited extent gives rise to a com-
pressed signal data space that can be appropriately described
by which is undersampled in. Consequently, its 1-D
transform, , is aliased in the range-Doppler domain.

As we know approximately where the target of interest is
located, we can center the aperture to be synthesized about

, the position of closest approach. (We can think of this
process as the equivalent of arranging the target of interest to
lie close to the boresight of the synthesized aperture.) Consider
now a single temporal frequency in the domain
and recall that is really a discrete set of samples .
Now has an approximately linear spatial frequency
dependence in and so, at some value of, this linear FM
waveform is spatially undersampled. For the small extended
target on boresight, the linear spatial frequency dependence of

is approximately known and may be removed to produced
a spatially compressed signal given by [27]

(17)

where it is important to note that both and
are both sampled at the same rate . This

operation is identical to the along-track deramping operation
used by spotlight SAR. In spotlight SAR, the phase factor in
(17) is equivalent to gating the signal about the scene center
where the distance from the current aperture position to the
scene center is given by .

Now, since has lost most of its high spatial
frequencies, it is usually well sampled at and so its Fourier
transform is not aliased. This now has enormous
benefits as we can zero pad well out beyond its
normally accepted limit of , i.e., we can define a
new Doppler wavenumber/temporal frequency domain,viz.,

for
(18)

It then follows that we can calculate from
. Finally, the decompressed signal that we would

have recorded at a higher spatial sampling rate can be
calculated by reinserting the linear FM waveform we originally
removed from in (17) to obtain

(19)

Note now that and are spatially up-
sampled versions of and without the
effects of the original undersampling, and we can proceed to
use and in the reconstruction algorithms
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Fig. 1. Range-compressed echoesss(t = 2r=c; u) for a single retroreflector
deployed 35.8 m from the towfish path. Sway effects are observable as an
indent in what should be a parabolic locus.

Fig. 2. Focused image generated from the sway affected echoes shown in
Fig. 1. The target blur covers 12 cm in slant-range and 3 m in along-track.
This image and those following has had its magnitude normalized to 1.0 and
has not been corrected into ground plane coordinates.

as if they have no aliased spatial frequencies at all and had
been adequately sampled in the original domain.

VI. RESULTS OF SEA TRIALS

In this section, we present the results of a series of sea
trials performed in Lyttelton Harbour, near Christchurch, New
Zealand, on November 25, 1994 and on May 2, 1995. The sea
state during each trial was not ideal (dead calm) with swells of
around 3 ft occurring (sea state 1–2). Fig. 1 shows a 2-D view
of the intensity of the reflections from a single retroreflector
deployed 35.8 m from the tow fish path (note that this is just
a small region of the sea-floor data collected). The effects
of sway can clearly be seen in Fig. 1: the returns from the
retroreflector should show a smooth parabolic locus, whereas
the actual locus is indented where the tow fish has moved away
(across-track) from the target during echo reception. The data
in Fig. 1 has been sampled such that our along-track aperture
sampling . With this in mind, the 3-D display of the
focused image shown in Fig. 2 has not resolved into a single
peak due to the corruption caused by the sway over the target,
as opposed to any corruption due to undersampling effects.
The effect of sway on the image is to spread the point target
predominantly in along-track. The blurred target is contained
within an area 12 cm in range and 3 m in along-track and
so is still an improvement over the raw data shown in Fig. 1,
which is spread 50 cm in range and 10 m in along-track. Fig. 3
shows the same focused target after the corrupting phase error
has been removed using autofocusing. The target has resolved

Fig. 3. Focused image generated from the sway affected echoes shown in
Fig. 1 after autofocus has removed the sway error. The point target is resolved
to �x3 dB = 6 cm in slant-range and�y3 dB = 24 cm in along-track. The
highest range side lobe level is at�23 dB and the highest along-track grating
lobe is at�22 dB.

Fig. 4. Focused image of along-track spatially undersampled data with
motion errors removed. The main peak is resolved to�x3 dB = 6 cm in
slant-range and�y3 dB = 24 cm in along-track. The highest range side lobe
is at�23 dB and the highest along-track grating lobe at�9 dB.

into a single peak with a resolution of 6
cm 24 cm, and maximum range sidelobes and along-track
grating lobes of 23 and 22 dB, respectively.

As a Hamming weighting function was applied to the range
dimension of the wavenumber domain before forming the
image estimate, the theoretical range resolution is given by

5 cm, and with a transducer length
32.5 cm and with very little weighting (just that caused by
the selection of elements and the damping effects of the
housing), the theoretical along-track resolution is 16 cm. Thus,
a comparison of the theoretical results to those observed shows
that the autofocusing procedure has resulted in an image with
resolution near the diffraction limit of the imaging system.

Fig. 4 is the result of focusing only every third along-track
pulse of the data in Fig. 1 after the effects of sway had been
removed. That is, Fig. 4 is the result of focusing data that has
been collected along a rectilinear path, but has beenspatially
undersampledin along-track. The data is displayed as a 3-D
plot to emphasize the existence of ambiguous or grating-lobe
targets either side of the main peak. The distance of these
ambiguous targets from the main peak is frequency-dependent,
so they have been smoothed in along-track by the transmission
of the low-Q waveform employed by the Kiwi-SAS system
(20 kHz bandwidth pulse around a 30-kHz carrier). The main
peak in Fig. 4 retains the resolution of the peak as shown in
Fig. 3, but the along-track grating-lobe level has risen 13 to

9 dB. The result of applying digital spotlighting compression
and upsampling, followed by focusing of the then upsampled
data, produces an image which is identical to Fig. 3 and
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Fig. 5. Range-compressed echoesss(t = 2r=c; u) for two retroreflectors
deployed 3 m apart, 35.5 m from the tow fish path. This raw data was
undersampled four times in along-track; the effects of sway can be seen in
the target at around 37 m.

shows no evidence at all of the ambiguous targets apparent
in Fig. 4. This shows that even in an undersampled situation
the system can achieve near diffraction-limited imaging of
compact targets. In this particular case, a mine-hunting vessel
could have traversed the aperture at three times the speed
normally specified for synthetic aperture systems, yet still
resolved the returns from compact mines.

Fig. 5 shows the range-compressed returns from two retrore-
flectors deployed 3 m apart, 35.5 m from the tow fish path.
This raw data was undersampled four times in along-track,
that is, , and as well the effects of tow fish sway can
be seen quite clearly in the target at around 37 m. Fig. 6 is the
result of focusing the data after spotlighting and autofocusing
the data, again near diffraction-limited performance has been
achieved with the target at 34 m being imaged to a resolution
of 5 cm 19 cm and the target at 37 m
being imaged to 7 cm 17 cm.

The focused images Figs. 2–4 and 6 were processed with
the exact algorithm for the target range, the range-Doppler
algorithm with SRC, the wavenumber algorithm, and the chirp-
scaling algorithm with SRC. All these algorithms produced
target responses that were visually identical which is why we
show only one example. A similar result has previously been
shown by Bamler [2] but only for narrow-band SAR images.

VII. CONCLUSION

We can reach four significant conclusions.
All of the major SAR algorithms work on synthetic aperture

sonar raw data; however, care should be taken to ensure
that the appropriate versions of the algorithms are used since
several of the narrow-band, beam-, and swath-width approxi-
mations used by the SAR community cannot be used for SAS.
This is especially true of some of the more computationally
efficient derivative algorithms. If there is any doubt, the safest
algorithm to use is the wavenumber as it is inherently wide
band-, beam-, and swath-width and, provided care is taken with
the grid-to-grid interpolation, produces close to diffraction-
limited images.

Given that there is a choice of waveforms allowed, the
most efficient SA imaging algorithm to use is the chirp-
scaling algorithm since it avoids the nonlinear grid-to-grid
interpolation needed by the range-Doppler and the wavenum-

Fig. 6. The focused image of the twin retroreflectors after spotlighting and
autofocusing. The target at 34 m is resolved to�x3 dB = 5 cm in slant-range
and �y3 dB = 19 cm in along-track. The target at 37 m is resolved to
�x3 dB = 7 cm in slant-range and�y3 dB = 17 cm in along-track.

ber algorithms. Although the chirp-scaling algorithm can be
applied to waveforms other than a linear swept FM, it is
optimized for that type of waveform. However, it is still
only an approximation to the wavenumber algorithm, so its
limitations must be considered.

If the targets of interest are relatively isolated and of limited
extent, then digital spotlighting is a valuable adjunct to the
imaging algorithm as it enables us to minimize the effects of
imperfect motion compensation as well as extensive aperture
undersampling. Here, the term “of limited extent” means
that the object needs to be smaller the synthetic aperture
appropriate for that range. For example, the mean range to
our target in Fig. 5 was 35.5 m. The synthetic aperture at that
range is approximately 5 m long, so our two-point reflector
target of 3 m between reflectors is slightly shorter than its
subtended synthetic aperture even oriented in the along-track
direction, i.e., parallel to the flight path—which is the worse-
case orientation. In fact, looking at Fig. 6, it is clear that the
orientation is rather more fortuitous and lies almost in the
cross-track direction.

The results of the imaging algorithms with digital spotlight-
ing on real sonar data collected in a series of unconstrained
(i.e., ocean-going, boat-towed as opposed to rail-guided) sea
trials proves that it is possible to get very close to the
diffraction limit of the imaging system for isolated targets.

APPENDIX A
APERTURE SAMPLE SPACING OF

A. Aperture Sample Spacing of

In 1978, Tomiyasu published a tutorial paper on strip-map
SAR [28]. In his paper, he described several methods from
which the required along-track sample spacing of could
be determined. To date, no publications appear to refute his
analysis, even though it has been obvious to a number of
investigators that sample spacings of are barely adequate
in many situations [11], [23].

The spatial sampling requirement is classically referred to
as in the SAR literature due in part to an incorrect
interpretation of the grating-lobe suppressing effect of the
real aperture radiation pattern [28]. Fig. 7 clearly explains the
origin of this confusion; Fig. 7(a) can be interpreted as the
array factor of the synthetic aperture at frequency; this figure
is formed by the along-track compression (phase matching) of
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(a)

(b)

Fig. 7. The effect of the real aperture pattern on the along-track undersam-
pling (a) classical grating-lobe suppression and (b) correct interpretation.

the along-track signal at the top of Fig. 7(b). This along-track
compression forms a main lobe at and grating lobes
spaced at where and .
The first null of the real aperture radiation pattern occurs at

(Fig. 7 assumes both transmitter and receiver have
the same length, ). The sample spacing required for this null
to suppress the grating lobe is .

This interpretation assumes anincorrect sequenceof events.
The correct sequence is shown in Fig. 7(b): the along-track
phase function at the top of Fig. 7(b) is weighted by the
real aperture radiation pattern, giving the signal shown in the
center. To determine the point at which aliasing occurs requires

the instantaneous position of the phase function in the
domain (9), . At the folding
Doppler wavenumber, , the instantaneous signal
will be at spatial location ; after this
point the signal aliases. The along-track signal passes through

again at multiples of . With an along-track
sample spacing of , the effect of the real aperture pattern
on the aliased signal is to suppress the terms at and
“attenuate” the aliased signals near the grating lobes. When
this signal is along-track compressed, the aliased energy near
the first grating lobe is compressed into an alias or grating-
lobe target that is 10% of the main lobe height. To reduce this
alias level, the along-track sample spacing should ideally be

. The classical interpretation incorrectly assumes
that all the aliased energy is compressed into the grating-
lobe peakbeforethe null of the real aperture radiation pattern
suppresses it. This interpretation is correct for a real aperture
array because all the elements are energized simultaneously,
however, for a synthetic aperture system, this is not the case.

Note that a sample spacing of still results in a small
amount of spatial aliasing. However, this aliasing can be
minimized still further by weighting the illumination patterns
of the real apertures.

APPENDIX B
THE PRINCIPLE OF STATIONARY PHASE

Briefly for integrands having a wide phase variation and
with an envelope of [9]:

(20)

where the “stationary point” is given by the solution of
the expression

assuming that the derivative of the phase with respect tois
single valued and has only one value of physical significance.

APPENDIX C
THE SPATIAL FOURIER TRANSFORM PAIR

Repeating (6) for convenience:

(21)

So let us apply a 1-D Fourier transform overto the phase
part of (21):

(22)
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Now the phase and derivatives of the RHS of (22) are given by

and solving for the stationary point gives

and when substituted back gives

So, as a result

(23)

where there is complex amplitude factorgiven by

and where the approximation for is valid for wide bandwidth
and low-Q system parameters.

Note that this amplitude factor is mildly dependent,
so that in a wide bandwidth system, it represents an un-
compensated amplitude modulation. Ideally, any processor
should include adeconvolutionfilter to remove this deter-
ministic amplitude function; however, the amplitude factor is
insignificant for most realistic windows of the Fourier domain.
Should the need arise, for instance, in a wide bandwidth
system, appropriate compensation can be applied as part of
the inversion processing.

Finally then, the Fourier transform of over is

(24)

where the complex amplitude resulting from the integration
has been ignored.
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