| 178 | 
        kaklik | 
        1 | 
        #ifndef GAUSS_H | 
      
      
         | 
         | 
        2 | 
        #define GAUSS_H | 
      
      
         | 
         | 
        3 | 
          | 
      
      
         | 
         | 
        4 | 
        #include <boost/multi_array.hpp> | 
      
      
         | 
         | 
        5 | 
        #include <cassert> | 
      
      
         | 
         | 
        6 | 
        #include <cmath> | 
      
      
         | 
         | 
        7 | 
        #include <deque> | 
      
      
         | 
         | 
        8 | 
        #include "image.h" | 
      
      
         | 
         | 
        9 | 
        #include "image_conv.h" | 
      
      
         | 
         | 
        10 | 
        #include "image_op.h" | 
      
      
         | 
         | 
        11 | 
          | 
      
      
         | 
         | 
        12 | 
        namespace mimas { | 
      
      
         | 
         | 
        13 | 
          | 
      
      
         | 
         | 
        14 | 
        /** @defgroup gauss Gaussian blur and Gauss gradient | 
      
      
         | 
         | 
        15 | 
            Methods for blurring images with a gauss-bell and gauss-gradient. | 
      
      
         | 
         | 
        16 | 
            The filter-parameter \f$\sigma\f$ can be choosen and the size of the filter | 
      
      
         | 
         | 
        17 | 
            is computed by choosing an upper bound for the approximation-error. | 
      
      
         | 
         | 
        18 | 
          | 
      
      
         | 
         | 
        19 | 
            The following example demonstrates how to blur an image: | 
      
      
         | 
         | 
        20 | 
            \include gauss_tool/main.cc | 
      
      
         | 
         | 
        21 | 
          | 
      
      
         | 
         | 
        22 | 
            @author Stuart Meikle (stu@stumeikle.org) | 
      
      
         | 
         | 
        23 | 
            @author Jan Wedekind (jan@wedesoft.de)     | 
      
      
         | 
         | 
        24 | 
            @date Fri Apr 07 18:52:00 2006 | 
      
      
         | 
         | 
        25 | 
            @{ */ | 
      
      
         | 
         | 
        26 | 
        /** Compute gauss-bell. | 
      
      
         | 
         | 
        27 | 
            The values of the cells are computed by using differences of the integral | 
      
      
         | 
         | 
        28 | 
            of the gauss-function: | 
      
      
         | 
         | 
        29 | 
            \f$\displaystyle\int_{-r}^{+r}{\frac{1}{\sqrt{2\,\pi}\,\sigma}\,e^{-\displaystyle\frac{x^2}{2\,\sigma^2}}\,\mathrm{d}x}\ =\ \mathrm{erf}(\displaystyle\frac{r}{\sqrt{2}\,\sigma})\f$ | 
      
      
         | 
         | 
        30 | 
          | 
      
      
         | 
         | 
        31 | 
            The coefficients are normalised afterwards such that the sum of all | 
      
      
         | 
         | 
        32 | 
            elements of the filter is \f$1\f$. | 
      
      
         | 
         | 
        33 | 
            @param sigma Standard deviation of gauss-distribution. | 
      
      
         | 
         | 
        34 | 
            @param maxError Maximum error boundary | 
      
      
         | 
         | 
        35 | 
            (relative to range of pixel-values). | 
      
      
         | 
         | 
        36 | 
            @see gaussBlur */ | 
      
      
         | 
         | 
        37 | 
        template< typename T > | 
      
      
         | 
         | 
        38 | 
        std::deque< T > gaussBlurFilter( T sigma, T maxError = (T)( 1.0 / 256.0 ) ); | 
      
      
         | 
         | 
        39 | 
          | 
      
      
         | 
         | 
        40 | 
        /** Blur 2-D array. | 
      
      
         | 
         | 
        41 | 
            Perform gaussian blur on 2-D array. | 
      
      
         | 
         | 
        42 | 
            @param x Input array. | 
      
      
         | 
         | 
        43 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        44 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        45 | 
            @see gaussBlurFilter */ | 
      
      
         | 
         | 
        46 | 
        template< typename T > | 
      
      
         | 
         | 
        47 | 
        boost::multi_array< T, 2 > gaussBlur | 
      
      
         | 
         | 
        48 | 
          ( const boost::const_multi_array_ref< T, 2 > &x, T sigma, T maxError ); | 
      
      
         | 
         | 
        49 | 
          | 
      
      
         | 
         | 
        50 | 
        /** Blur image. | 
      
      
         | 
         | 
        51 | 
            Perform gaussian blur on 2-D image. | 
      
      
         | 
         | 
        52 | 
            @param x Input image. | 
      
      
         | 
         | 
        53 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        54 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        55 | 
            @see gaussBlurFilter */ | 
      
      
         | 
         | 
        56 | 
        template< typename T > | 
      
      
         | 
         | 
        57 | 
        image< T > gaussBlur( const image< T > &x, T sigma, | 
      
      
         | 
         | 
        58 | 
                              T maxError = (T)( 1.0 / 256.0 ) ) | 
      
      
         | 
         | 
        59 | 
        { | 
      
      
         | 
         | 
        60 | 
          boost::const_multi_array_ref< T, 2 > data | 
      
      
         | 
         | 
        61 | 
            ( x.rawData(), boost::extents[ x.getHeight() ][ x.getWidth() ] ); | 
      
      
         | 
         | 
        62 | 
          image< T > retVal; retVal.init( x.getWidth(), x.getHeight() ); | 
      
      
         | 
         | 
        63 | 
          boost::multi_array_ref< T, 2 > | 
      
      
         | 
         | 
        64 | 
            ( retVal.rawData(), | 
      
      
         | 
         | 
        65 | 
              boost::extents[ retVal.getHeight() ][ retVal.getWidth() ] ) = | 
      
      
         | 
         | 
        66 | 
            gaussBlur< T >( data, sigma, maxError ); | 
      
      
         | 
         | 
        67 | 
          return retVal; | 
      
      
         | 
         | 
        68 | 
        } | 
      
      
         | 
         | 
        69 | 
          | 
      
      
         | 
         | 
        70 | 
        /** Compute gauss-gradient. | 
      
      
         | 
         | 
        71 | 
            The values of the cells are computed by using differences of the | 
      
      
         | 
         | 
        72 | 
            integral (the gauss-function): | 
      
      
         | 
         | 
        73 | 
            \f$\frac{1}{\sqrt{2\,\pi}\,\sigma}\,e^{-\displaystyle\frac{x^2}{2\,\sigma^2}}\,\mathrm{d}x\big\|_r^\infty\f$ | 
      
      
         | 
         | 
        74 | 
          | 
      
      
         | 
         | 
        75 | 
            The coefficients are normalised afterwards such that the sum of the square | 
      
      
         | 
         | 
        76 | 
            of all elements of the filter is \f$1\f$. | 
      
      
         | 
         | 
        77 | 
            @param sigma Standard deviation of gauss-distribution. | 
      
      
         | 
         | 
        78 | 
            @param maxError Maximum error boundary | 
      
      
         | 
         | 
        79 | 
            (relative to range of pixel-values). | 
      
      
         | 
         | 
        80 | 
            @see gaussBlur */ | 
      
      
         | 
         | 
        81 | 
        template< typename T > | 
      
      
         | 
         | 
        82 | 
        std::deque< T > gaussGradientFilter( T sigma, | 
      
      
         | 
         | 
        83 | 
                                             T maxError = (T)( 1.0 / 256.0 ) ); | 
      
      
         | 
         | 
        84 | 
          | 
      
      
         | 
         | 
        85 | 
        /** Take x-gradient of 2-D array. | 
      
      
         | 
         | 
        86 | 
            Compute gauss-gradient of 2-D array in x-direction. | 
      
      
         | 
         | 
        87 | 
            @param x Input array. | 
      
      
         | 
         | 
        88 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        89 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        90 | 
            @see gaussGradientFilter */ | 
      
      
         | 
         | 
        91 | 
        template< typename T > | 
      
      
         | 
         | 
        92 | 
        boost::multi_array< T, 2 > gaussGradientX | 
      
      
         | 
         | 
        93 | 
          ( const boost::const_multi_array_ref< T, 2 > &x, T sigma, T maxError ); | 
      
      
         | 
         | 
        94 | 
          | 
      
      
         | 
         | 
        95 | 
        /** Take x-gradient of 2-D image. | 
      
      
         | 
         | 
        96 | 
            Compute gauss-gradient of 2-D image in x-direction. | 
      
      
         | 
         | 
        97 | 
            @param x Input image. | 
      
      
         | 
         | 
        98 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        99 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        100 | 
            @see gaussGradientFilter */ | 
      
      
         | 
         | 
        101 | 
        template< typename T > | 
      
      
         | 
         | 
        102 | 
        image< T > gaussGradientX( const image< T > &x, T sigma, | 
      
      
         | 
         | 
        103 | 
                                   T maxError = (T)( 1.0 / 256.0 ) ); | 
      
      
         | 
         | 
        104 | 
          | 
      
      
         | 
         | 
        105 | 
        /** Take y-gradient of 2-D array. | 
      
      
         | 
         | 
        106 | 
            Compute gauss-gradient of 2-D array in y-direction. | 
      
      
         | 
         | 
        107 | 
            @param x Input array. | 
      
      
         | 
         | 
        108 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        109 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        110 | 
            @see gaussGradientFilter */ | 
      
      
         | 
         | 
        111 | 
        template< typename T > | 
      
      
         | 
         | 
        112 | 
        boost::multi_array< T, 2 > gaussGradientY | 
      
      
         | 
         | 
        113 | 
          ( const boost::const_multi_array_ref< T, 2 > &x, T sigma, T maxError ); | 
      
      
         | 
         | 
        114 | 
          | 
      
      
         | 
         | 
        115 | 
        /** Take y-gradient of 2-D image. | 
      
      
         | 
         | 
        116 | 
            Compute gauss-gradient of 2-D image in y-direction. | 
      
      
         | 
         | 
        117 | 
            @param x Input image. | 
      
      
         | 
         | 
        118 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        119 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        120 | 
            @see gaussGradientFilter */ | 
      
      
         | 
         | 
        121 | 
        template< typename T > | 
      
      
         | 
         | 
        122 | 
        image< T > gaussGradientY( const image< T > &x, T sigma, | 
      
      
         | 
         | 
        123 | 
                                   T maxError = (T)( 1.0 / 256.0 ) ); | 
      
      
         | 
         | 
        124 | 
          | 
      
      
         | 
         | 
        125 | 
        /** Square of gradient-norm. | 
      
      
         | 
         | 
        126 | 
            Compute square of gradient-norm for 2-D image | 
      
      
         | 
         | 
        127 | 
            @param im Input image. | 
      
      
         | 
         | 
        128 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        129 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        130 | 
            @see gaussGradientFilter */ | 
      
      
         | 
         | 
        131 | 
        template< typename T > | 
      
      
         | 
         | 
        132 | 
        image< T > gaussGradientSqr( const image< T > &im, T sigma, | 
      
      
         | 
         | 
        133 | 
                                     T maxError = (T)( 1.0 / 256.0 ) ) | 
      
      
         | 
         | 
        134 | 
        { | 
      
      
         | 
         | 
        135 | 
          image< T > | 
      
      
         | 
         | 
        136 | 
            gradX( gaussGradientX( im, sigma, maxError ) ), | 
      
      
         | 
         | 
        137 | 
            gradY( gaussGradientY( im, sigma, maxError ) ); | 
      
      
         | 
         | 
        138 | 
          return sumSquares( gradX, gradY ); | 
      
      
         | 
         | 
        139 | 
        } | 
      
      
         | 
         | 
        140 | 
          | 
      
      
         | 
         | 
        141 | 
        /** Gradient-norm. | 
      
      
         | 
         | 
        142 | 
            Compute gradient-norm for 2-D image | 
      
      
         | 
         | 
        143 | 
            @param im Input image. | 
      
      
         | 
         | 
        144 | 
            @param sigma Standard deviation. | 
      
      
         | 
         | 
        145 | 
            @param maxError Maximum error boundary (relative to range of pixel-values). | 
      
      
         | 
         | 
        146 | 
            @see gaussGradientFilter */ | 
      
      
         | 
         | 
        147 | 
        template< typename T > | 
      
      
         | 
         | 
        148 | 
        image< T > gaussGradientNorm( const image< T > &im, T sigma, | 
      
      
         | 
         | 
        149 | 
                                      T maxError = (T)( 1.0 / 256.0 ) ) | 
      
      
         | 
         | 
        150 | 
        { | 
      
      
         | 
         | 
        151 | 
          return squareRoot( gaussGradientSqr( im, sigma, maxError ) ); | 
      
      
         | 
         | 
        152 | 
        } | 
      
      
         | 
         | 
        153 | 
          | 
      
      
         | 
         | 
        154 | 
        ///@} | 
      
      
         | 
         | 
        155 | 
          | 
      
      
         | 
         | 
        156 | 
        }; | 
      
      
         | 
         | 
        157 | 
          | 
      
      
         | 
         | 
        158 | 
        #include "gauss.tcc" | 
      
      
         | 
         | 
        159 | 
          | 
      
      
         | 
         | 
        160 | 
        #endif |