| 549 |
kaklik |
1 |
# include <stdlib.h>
|
|
|
2 |
# include <stdio.h>
|
|
|
3 |
# include <time.h>
|
|
|
4 |
|
|
|
5 |
# include <fftw3.h>
|
|
|
6 |
|
|
|
7 |
int main ( void );
|
|
|
8 |
void test01 ( void );
|
|
|
9 |
void test02 ( void );
|
|
|
10 |
void test03 ( void );
|
|
|
11 |
void test04 ( void );
|
|
|
12 |
double frand ( void );
|
|
|
13 |
void timestamp ( void );
|
|
|
14 |
|
|
|
15 |
/******************************************************************************/
|
|
|
16 |
|
|
|
17 |
int main ( void )
|
|
|
18 |
|
|
|
19 |
/******************************************************************************/
|
|
|
20 |
/*
|
|
|
21 |
Purpose:
|
|
|
22 |
|
|
|
23 |
FFTW3_PRB demonstrates the use of FFTW3.
|
|
|
24 |
|
|
|
25 |
Modified:
|
|
|
26 |
|
|
|
27 |
05 November 2007
|
|
|
28 |
|
|
|
29 |
Author:
|
|
|
30 |
|
|
|
31 |
John Burkardt
|
|
|
32 |
*/
|
|
|
33 |
{
|
|
|
34 |
timestamp ( );
|
|
|
35 |
|
|
|
36 |
printf ( "\n" );
|
|
|
37 |
printf ( "FFTW3_PRB\n" );
|
|
|
38 |
printf ( " C version\n" );
|
|
|
39 |
printf ( "\n" );
|
|
|
40 |
printf ( " Demonstrate the use of the C FFTW3 library.\n" );
|
|
|
41 |
|
|
|
42 |
// test01 ( );
|
|
|
43 |
test02 ( );
|
|
|
44 |
// test03 ( );
|
|
|
45 |
//test04 ( );
|
|
|
46 |
|
|
|
47 |
printf ( "\n" );
|
|
|
48 |
printf ( "FFTW3_PRB\n" );
|
|
|
49 |
printf ( " Normal end of execution.\n" );
|
|
|
50 |
|
|
|
51 |
printf ( "\n" );
|
|
|
52 |
timestamp ( );
|
|
|
53 |
|
|
|
54 |
return 0;
|
|
|
55 |
}
|
|
|
56 |
/******************************************************************************/
|
|
|
57 |
|
|
|
58 |
void test01 ( void )
|
|
|
59 |
|
|
|
60 |
/******************************************************************************/
|
|
|
61 |
/*
|
|
|
62 |
Purpose:
|
|
|
63 |
|
|
|
64 |
TEST01: apply FFT to complex 1D data.
|
|
|
65 |
|
|
|
66 |
Discussion:
|
|
|
67 |
|
|
|
68 |
In this example, we generate N=100 random complex values stored as
|
|
|
69 |
a vector of type FFTW_COMPLEX named "IN".
|
|
|
70 |
|
|
|
71 |
We have FFTW3 compute the Fourier transform of this data named "OUT".
|
|
|
72 |
|
|
|
73 |
We have FFTW3 compute the inverse Fourier transform of "OUT" to get
|
|
|
74 |
"IN2", which should be the original input data, scaled by N.
|
|
|
75 |
|
|
|
76 |
Modified:
|
|
|
77 |
|
|
|
78 |
04 November 2007
|
|
|
79 |
*/
|
|
|
80 |
{
|
|
|
81 |
int i;
|
|
|
82 |
fftw_complex *in;
|
|
|
83 |
fftw_complex *in2;
|
|
|
84 |
int n = 100;
|
|
|
85 |
fftw_complex *out;
|
|
|
86 |
fftw_plan plan_backward;
|
|
|
87 |
fftw_plan plan_forward;
|
|
|
88 |
unsigned int seed = 123456789;
|
|
|
89 |
|
|
|
90 |
printf ( "\n" );
|
|
|
91 |
printf ( "TEST01\n" );
|
|
|
92 |
printf ( " Demonstrate FFTW3 on a single vector of complex data.\n" );
|
|
|
93 |
printf ( "\n" );
|
|
|
94 |
printf ( " Transform data to FFT coefficients.\n" );
|
|
|
95 |
printf ( " Backtransform FFT coefficients to recover data.\n" );
|
|
|
96 |
printf ( " Compare recovered data to original data.\n" );
|
|
|
97 |
/*
|
|
|
98 |
Create the input array.
|
|
|
99 |
*/
|
|
|
100 |
in = fftw_malloc ( sizeof ( fftw_complex ) * n );
|
|
|
101 |
|
|
|
102 |
srand ( seed );
|
|
|
103 |
|
|
|
104 |
for ( i = 0; i < n; i++ )
|
|
|
105 |
{
|
|
|
106 |
in[i][0] = frand ( );
|
|
|
107 |
in[i][1] = frand ( );
|
|
|
108 |
}
|
|
|
109 |
|
|
|
110 |
printf ( "\n" );
|
|
|
111 |
printf ( " Input Data:\n" );
|
|
|
112 |
printf ( "\n" );
|
|
|
113 |
|
|
|
114 |
for ( i = 0; i < n; i++ )
|
|
|
115 |
{
|
|
|
116 |
printf ( " %3d %12f %12f\n", i, in[i][0], in[i][1] );
|
|
|
117 |
}
|
|
|
118 |
/*
|
|
|
119 |
Create the output array.
|
|
|
120 |
*/
|
|
|
121 |
out = fftw_malloc ( sizeof ( fftw_complex ) * n );
|
|
|
122 |
|
|
|
123 |
plan_forward = fftw_plan_dft_1d ( n, in, out, FFTW_FORWARD, FFTW_ESTIMATE );
|
|
|
124 |
|
|
|
125 |
fftw_execute ( plan_forward );
|
|
|
126 |
|
|
|
127 |
printf ( "\n" );
|
|
|
128 |
printf ( " Output FFT Coefficients:\n" );
|
|
|
129 |
printf ( "\n" );
|
|
|
130 |
|
|
|
131 |
for ( i = 0; i < n; i++ )
|
|
|
132 |
{
|
|
|
133 |
printf ( " %3d %12f %12f\n", i, out[i][0], out[i][1] );
|
|
|
134 |
}
|
|
|
135 |
/*
|
|
|
136 |
Recreate the input array.
|
|
|
137 |
*/
|
|
|
138 |
in2 = fftw_malloc ( sizeof ( fftw_complex ) * n );
|
|
|
139 |
|
|
|
140 |
plan_backward = fftw_plan_dft_1d ( n, out, in2, FFTW_BACKWARD, FFTW_ESTIMATE );
|
|
|
141 |
|
|
|
142 |
fftw_execute ( plan_backward );
|
|
|
143 |
|
|
|
144 |
printf ( "\n" );
|
|
|
145 |
printf ( " Recovered input data:\n" );
|
|
|
146 |
printf ( "\n" );
|
|
|
147 |
|
|
|
148 |
for ( i = 0; i < n; i++ )
|
|
|
149 |
{
|
|
|
150 |
printf ( " %3d %12f %12f\n", i, in2[i][0], in2[i][1] );
|
|
|
151 |
}
|
|
|
152 |
|
|
|
153 |
printf ( "\n" );
|
|
|
154 |
printf ( " Recovered input data divided by N:\n" );
|
|
|
155 |
printf ( "\n" );
|
|
|
156 |
|
|
|
157 |
for ( i = 0; i < n; i++ )
|
|
|
158 |
{
|
|
|
159 |
printf ( " %3d %12f %12f\n", i,
|
|
|
160 |
in2[i][0] / ( double ) ( n ), in2[i][1] / ( double ) ( n ) );
|
|
|
161 |
}
|
|
|
162 |
/*
|
|
|
163 |
Free up the allocated memory.
|
|
|
164 |
*/
|
|
|
165 |
fftw_destroy_plan ( plan_forward );
|
|
|
166 |
fftw_destroy_plan ( plan_backward );
|
|
|
167 |
|
|
|
168 |
fftw_free ( in );
|
|
|
169 |
fftw_free ( in2 );
|
|
|
170 |
fftw_free ( out );
|
|
|
171 |
|
|
|
172 |
return;
|
|
|
173 |
}
|
|
|
174 |
/******************************************************************************/
|
|
|
175 |
|
|
|
176 |
void test02 ( void )
|
|
|
177 |
|
|
|
178 |
/******************************************************************************/
|
|
|
179 |
/*
|
|
|
180 |
Purpose:
|
|
|
181 |
|
|
|
182 |
TEST02: apply FFT to real 1D data.
|
|
|
183 |
|
|
|
184 |
Modified:
|
|
|
185 |
|
|
|
186 |
23 October 2005
|
|
|
187 |
*/
|
|
|
188 |
{
|
|
|
189 |
int i;
|
|
|
190 |
double *in;
|
|
|
191 |
double *in2;
|
|
|
192 |
int n = 100;
|
|
|
193 |
int nc;
|
|
|
194 |
fftw_complex *out;
|
|
|
195 |
fftw_plan plan_backward;
|
|
|
196 |
fftw_plan plan_forward;
|
|
|
197 |
unsigned int seed = 123456789;
|
|
|
198 |
|
|
|
199 |
printf ( "\n" );
|
|
|
200 |
printf ( "TEST02\n" );
|
|
|
201 |
printf ( " Demonstrate FFTW3 on a single vector of real data.\n" );
|
|
|
202 |
printf ( "\n" );
|
|
|
203 |
printf ( " Transform data to FFT coefficients.\n" );
|
|
|
204 |
printf ( " Backtransform FFT coefficients to recover data.\n" );
|
|
|
205 |
printf ( " Compare recovered data to original data.\n" );
|
|
|
206 |
/*
|
|
|
207 |
Set up an array to hold the data, and assign the data.
|
|
|
208 |
*/
|
|
|
209 |
in = fftw_malloc ( sizeof ( double ) * n );
|
|
|
210 |
|
|
|
211 |
srand ( seed );
|
|
|
212 |
|
|
|
213 |
for ( i = 0; i < n; i++ )
|
|
|
214 |
{
|
|
|
215 |
in[i] = frand ( );
|
|
|
216 |
}
|
|
|
217 |
|
|
|
218 |
printf ( "\n" );
|
|
|
219 |
printf ( " Input Data:\n" );
|
|
|
220 |
printf ( "\n" );
|
|
|
221 |
|
|
|
222 |
for ( i = 0; i < n; i++ )
|
|
|
223 |
{
|
|
|
224 |
printf ( " %4d %12f\n", i, in[i] );
|
|
|
225 |
}
|
|
|
226 |
/*
|
|
|
227 |
Set up an array to hold the transformed data,
|
|
|
228 |
get a "plan", and execute the plan to transform the IN data to
|
|
|
229 |
the OUT FFT coefficients.
|
|
|
230 |
*/
|
|
|
231 |
nc = ( n / 2 ) + 1;
|
|
|
232 |
|
|
|
233 |
out = fftw_malloc ( sizeof ( fftw_complex ) * nc );
|
|
|
234 |
|
|
|
235 |
plan_forward = fftw_plan_dft_r2c_1d ( n, in, out, FFTW_ESTIMATE );
|
|
|
236 |
|
|
|
237 |
fftw_execute ( plan_forward );
|
|
|
238 |
|
|
|
239 |
printf ( "\n" );
|
|
|
240 |
printf ( " Output FFT Coefficients:\n" );
|
|
|
241 |
printf ( "\n" );
|
|
|
242 |
|
|
|
243 |
for ( i = 0; i < nc; i++ )
|
|
|
244 |
{
|
|
|
245 |
printf ( " %4d %12f %12f\n", i, out[i][0], out[i][1] );
|
|
|
246 |
}
|
|
|
247 |
/*
|
|
|
248 |
Set up an arrray to hold the backtransformed data IN2,
|
|
|
249 |
get a "plan", and execute the plan to backtransform the OUT
|
|
|
250 |
FFT coefficients to IN2.
|
|
|
251 |
*/
|
|
|
252 |
in2 = fftw_malloc ( sizeof ( double ) * n );
|
|
|
253 |
|
|
|
254 |
plan_backward = fftw_plan_dft_c2r_1d ( n, out, in2, FFTW_ESTIMATE );
|
|
|
255 |
|
|
|
256 |
fftw_execute ( plan_backward );
|
|
|
257 |
|
|
|
258 |
printf ( "\n" );
|
|
|
259 |
printf ( " Recovered input data divided by N:\n" );
|
|
|
260 |
printf ( "\n" );
|
|
|
261 |
|
|
|
262 |
for ( i = 0; i < n; i++ )
|
|
|
263 |
{
|
|
|
264 |
printf ( " %4d %12f\n", i, in2[i] / ( double ) ( n ) );
|
|
|
265 |
}
|
|
|
266 |
/*
|
|
|
267 |
Release the memory associated with the plans.
|
|
|
268 |
*/
|
|
|
269 |
fftw_destroy_plan ( plan_forward );
|
|
|
270 |
fftw_destroy_plan ( plan_backward );
|
|
|
271 |
|
|
|
272 |
fftw_free ( in );
|
|
|
273 |
fftw_free ( in2 );
|
|
|
274 |
fftw_free ( out );
|
|
|
275 |
|
|
|
276 |
return;
|
|
|
277 |
}
|
|
|
278 |
/******************************************************************************/
|
|
|
279 |
|
|
|
280 |
void test03 ( void )
|
|
|
281 |
|
|
|
282 |
/******************************************************************************/
|
|
|
283 |
/*
|
|
|
284 |
Purpose:
|
|
|
285 |
|
|
|
286 |
TEST03: apply FFT to complex 2D data.
|
|
|
287 |
|
|
|
288 |
Discussion:
|
|
|
289 |
|
|
|
290 |
In this example, we generate NX=8 by NY=10 random complex values
|
|
|
291 |
stored as an NX by NY array of type FFTW_COMPLEX named "IN".
|
|
|
292 |
|
|
|
293 |
We have FFTW3 compute the Fourier transform of this data named "OUT".
|
|
|
294 |
|
|
|
295 |
We have FFTW3 compute the inverse Fourier transform of "OUT" to get
|
|
|
296 |
"IN2", which should be the original input data, scaled by NX * NY.
|
|
|
297 |
|
|
|
298 |
For a 2D complex NX by NY array used by FFTW, we need to access elements
|
|
|
299 |
as follows:
|
|
|
300 |
|
|
|
301 |
a[i*ny+j][0] is the real part of A(I,J).
|
|
|
302 |
a[i*ny+j][1] is the imaginary part of A(I,J)..
|
|
|
303 |
|
|
|
304 |
Modified:
|
|
|
305 |
|
|
|
306 |
05 November 2007
|
|
|
307 |
|
|
|
308 |
Author:
|
|
|
309 |
|
|
|
310 |
John Burkardt
|
|
|
311 |
*/
|
|
|
312 |
{
|
|
|
313 |
int i;
|
|
|
314 |
fftw_complex *in;
|
|
|
315 |
fftw_complex *in2;
|
|
|
316 |
int j;
|
|
|
317 |
int nx = 8;
|
|
|
318 |
int ny = 10;
|
|
|
319 |
fftw_complex *out;
|
|
|
320 |
fftw_plan plan_backward;
|
|
|
321 |
fftw_plan plan_forward;
|
|
|
322 |
unsigned int seed = 123456789;
|
|
|
323 |
|
|
|
324 |
printf ( "\n" );
|
|
|
325 |
printf ( "TEST03\n" );
|
|
|
326 |
printf ( " Demonstrate FFTW3 on a %d by %d array of complex data.\n",
|
|
|
327 |
nx, ny );
|
|
|
328 |
printf ( "\n" );
|
|
|
329 |
printf ( " Transform data to FFT coefficients.\n" );
|
|
|
330 |
printf ( " Backtransform FFT coefficients to recover data.\n" );
|
|
|
331 |
printf ( " Compare recovered data to original data.\n" );
|
|
|
332 |
/*
|
|
|
333 |
Create the input array.
|
|
|
334 |
*/
|
|
|
335 |
in = fftw_malloc ( sizeof ( fftw_complex ) * nx * ny );
|
|
|
336 |
|
|
|
337 |
srand ( seed );
|
|
|
338 |
|
|
|
339 |
for ( i = 0; i < nx; i++ )
|
|
|
340 |
{
|
|
|
341 |
for ( j = 0; j < ny; j++ )
|
|
|
342 |
{
|
|
|
343 |
in[i*ny+j][0] = frand ( );
|
|
|
344 |
in[i*ny+j][1] = frand ( );
|
|
|
345 |
}
|
|
|
346 |
}
|
|
|
347 |
|
|
|
348 |
printf ( "\n" );
|
|
|
349 |
printf ( " Input Data:\n" );
|
|
|
350 |
printf ( "\n" );
|
|
|
351 |
|
|
|
352 |
for ( i = 0; i < nx; i++ )
|
|
|
353 |
{
|
|
|
354 |
for ( j = 0; j < ny; j++ )
|
|
|
355 |
{
|
|
|
356 |
printf ( " %4d %4d %12f %12f\n", i, j, in[i*ny+j][0], in[i*ny+j][1] );
|
|
|
357 |
}
|
|
|
358 |
}
|
|
|
359 |
/*
|
|
|
360 |
Create the output array.
|
|
|
361 |
*/
|
|
|
362 |
out = fftw_malloc ( sizeof ( fftw_complex ) * nx * ny );
|
|
|
363 |
|
|
|
364 |
plan_forward = fftw_plan_dft_2d ( nx, ny, in, out, FFTW_FORWARD,
|
|
|
365 |
FFTW_ESTIMATE );
|
|
|
366 |
|
|
|
367 |
fftw_execute ( plan_forward );
|
|
|
368 |
|
|
|
369 |
printf ( "\n" );
|
|
|
370 |
printf ( " Output FFT Coefficients:\n" );
|
|
|
371 |
printf ( "\n" );
|
|
|
372 |
|
|
|
373 |
for ( i = 0; i < nx; i++ )
|
|
|
374 |
{
|
|
|
375 |
for ( j = 0; j < ny; j++ )
|
|
|
376 |
{
|
|
|
377 |
printf ( " %4d %4d %12f %12f\n", i, j, out[i*ny+j][0], out[i*ny+j][1] );
|
|
|
378 |
}
|
|
|
379 |
}
|
|
|
380 |
/*
|
|
|
381 |
Recreate the input array.
|
|
|
382 |
*/
|
|
|
383 |
in2 = fftw_malloc ( sizeof ( fftw_complex ) * nx * ny );
|
|
|
384 |
|
|
|
385 |
plan_backward = fftw_plan_dft_2d ( nx, ny, out, in2, FFTW_BACKWARD,
|
|
|
386 |
FFTW_ESTIMATE );
|
|
|
387 |
|
|
|
388 |
fftw_execute ( plan_backward );
|
|
|
389 |
|
|
|
390 |
printf ( "\n" );
|
|
|
391 |
printf ( " Recovered input data divided by NX * NY:\n" );
|
|
|
392 |
printf ( "\n" );
|
|
|
393 |
|
|
|
394 |
for ( i = 0; i < nx; i++ )
|
|
|
395 |
{
|
|
|
396 |
for ( j = 0; j < ny; j++ )
|
|
|
397 |
{
|
|
|
398 |
printf ( " %4d %4d %12f %12f\n", i, j,
|
|
|
399 |
in2[i*ny+j][0] / ( double ) ( nx * ny ),
|
|
|
400 |
in2[i*ny+j][1] / ( double ) ( nx * ny ) );
|
|
|
401 |
}
|
|
|
402 |
}
|
|
|
403 |
/*
|
|
|
404 |
Free up the allocated memory.
|
|
|
405 |
*/
|
|
|
406 |
fftw_destroy_plan ( plan_forward );
|
|
|
407 |
fftw_destroy_plan ( plan_backward );
|
|
|
408 |
|
|
|
409 |
fftw_free ( in );
|
|
|
410 |
fftw_free ( in2 );
|
|
|
411 |
fftw_free ( out );
|
|
|
412 |
|
|
|
413 |
return;
|
|
|
414 |
}
|
|
|
415 |
/******************************************************************************/
|
|
|
416 |
|
|
|
417 |
void test04 ( void )
|
|
|
418 |
|
|
|
419 |
/******************************************************************************/
|
|
|
420 |
/*
|
|
|
421 |
Purpose:
|
|
|
422 |
|
|
|
423 |
TEST04: apply FFT to real 2D data.
|
|
|
424 |
|
|
|
425 |
Discussion:
|
|
|
426 |
|
|
|
427 |
In this example, we generate NX=8 by NY=10 random real values
|
|
|
428 |
stored as an NX by NY array of type DOUBLE named "IN".
|
|
|
429 |
|
|
|
430 |
We have FFTW3 compute the Fourier transform of this data named "OUT".
|
|
|
431 |
|
|
|
432 |
We have FFTW3 compute the inverse Fourier transform of "OUT" to get
|
|
|
433 |
"IN2", which should be the original input data, scaled by NX * NY.
|
|
|
434 |
|
|
|
435 |
The Fourier coefficients are stored in an NX by NYH array where
|
|
|
436 |
NYH = (NY/2) + 1. We only compute about half the data because
|
|
|
437 |
of real data implies symmetric FFT coefficients.
|
|
|
438 |
|
|
|
439 |
a[i*nyh+j][0] is the real part of A(I,J).
|
|
|
440 |
a[i*nyh+j][1] is the imaginary part of A(I,J)..
|
|
|
441 |
|
|
|
442 |
Modified:
|
|
|
443 |
|
|
|
444 |
05 November 2007
|
|
|
445 |
|
|
|
446 |
Author:
|
|
|
447 |
|
|
|
448 |
John Burkardt
|
|
|
449 |
*/
|
|
|
450 |
{
|
|
|
451 |
int i;
|
|
|
452 |
double *in;
|
|
|
453 |
double *in2;
|
|
|
454 |
int j;
|
|
|
455 |
int nx = 8;
|
|
|
456 |
int ny = 10;
|
|
|
457 |
int nyh;
|
|
|
458 |
fftw_complex *out;
|
|
|
459 |
fftw_plan plan_backward;
|
|
|
460 |
fftw_plan plan_forward;
|
|
|
461 |
unsigned int seed = 123456789;
|
|
|
462 |
|
|
|
463 |
printf ( "\n" );
|
|
|
464 |
printf ( "TEST04\n" );
|
|
|
465 |
printf ( " Demonstrate FFTW3 on a %d by %d array of real data.\n",
|
|
|
466 |
nx, ny );
|
|
|
467 |
printf ( "\n" );
|
|
|
468 |
printf ( " Transform data to FFT coefficients.\n" );
|
|
|
469 |
printf ( " Backtransform FFT coefficients to recover data.\n" );
|
|
|
470 |
printf ( " Compare recovered data to original data.\n" );
|
|
|
471 |
/*
|
|
|
472 |
Create the input array, an NX by NY array of doubles.
|
|
|
473 |
*/
|
|
|
474 |
in = malloc ( sizeof ( double ) * nx * ny );
|
|
|
475 |
|
|
|
476 |
srand ( seed );
|
|
|
477 |
|
|
|
478 |
for ( i = 0; i < nx; i++ )
|
|
|
479 |
{
|
|
|
480 |
for ( j = 0; j < ny; j++ )
|
|
|
481 |
{
|
|
|
482 |
in[i*ny+j] = frand ( );
|
|
|
483 |
}
|
|
|
484 |
}
|
|
|
485 |
|
|
|
486 |
printf ( "\n" );
|
|
|
487 |
printf ( " Input Data:\n" );
|
|
|
488 |
printf ( "\n" );
|
|
|
489 |
|
|
|
490 |
for ( i = 0; i < nx; i++ )
|
|
|
491 |
{
|
|
|
492 |
for ( j = 0; j < ny; j++ )
|
|
|
493 |
{
|
|
|
494 |
printf ( " %4d %4d %12f\n", i, j, in[i*ny+j] );
|
|
|
495 |
}
|
|
|
496 |
}
|
|
|
497 |
/*
|
|
|
498 |
Create the output array OUT, which is of type FFTW_COMPLEX,
|
|
|
499 |
and of a size NX * NYH that is roughly half the dimension of the input data
|
|
|
500 |
(ignoring the fact that the input data is real, and the FFT
|
|
|
501 |
coefficients are complex).
|
|
|
502 |
*/
|
|
|
503 |
nyh = ( ny / 2 ) + 1;
|
|
|
504 |
|
|
|
505 |
out = fftw_malloc ( sizeof ( fftw_complex ) * nx * nyh );
|
|
|
506 |
|
|
|
507 |
plan_forward = fftw_plan_dft_r2c_2d ( nx, ny, in, out, FFTW_ESTIMATE );
|
|
|
508 |
|
|
|
509 |
fftw_execute ( plan_forward );
|
|
|
510 |
|
|
|
511 |
printf ( "\n" );
|
|
|
512 |
printf ( " Output FFT Coefficients:\n" );
|
|
|
513 |
printf ( "\n" );
|
|
|
514 |
|
|
|
515 |
for ( i = 0; i < nx; i++ )
|
|
|
516 |
{
|
|
|
517 |
for ( j = 0; j < nyh; j++ )
|
|
|
518 |
{
|
|
|
519 |
printf ( " %4d %4d %12f %12f\n",
|
|
|
520 |
i, j, out[i*nyh+j][0], out[i*nyh+j][1] );
|
|
|
521 |
}
|
|
|
522 |
}
|
|
|
523 |
/*
|
|
|
524 |
Recreate the input array.
|
|
|
525 |
*/
|
|
|
526 |
in2 = malloc ( sizeof ( double ) * nx * ny );
|
|
|
527 |
|
|
|
528 |
plan_backward = fftw_plan_dft_c2r_2d ( nx, ny, out, in2, FFTW_ESTIMATE );
|
|
|
529 |
|
|
|
530 |
fftw_execute ( plan_backward );
|
|
|
531 |
|
|
|
532 |
printf ( "\n" );
|
|
|
533 |
printf ( " Recovered input data divided by NX * NY:\n" );
|
|
|
534 |
printf ( "\n" );
|
|
|
535 |
|
|
|
536 |
for ( i = 0; i < nx; i++ )
|
|
|
537 |
{
|
|
|
538 |
for ( j = 0; j < ny; j++ )
|
|
|
539 |
{
|
|
|
540 |
printf ( " %4d %4d %12f\n",
|
|
|
541 |
i, j, in2[i*ny+j] / ( double ) ( nx * ny ) );
|
|
|
542 |
}
|
|
|
543 |
}
|
|
|
544 |
/*
|
|
|
545 |
Free up the allocated memory.
|
|
|
546 |
*/
|
|
|
547 |
fftw_destroy_plan ( plan_forward );
|
|
|
548 |
fftw_destroy_plan ( plan_backward );
|
|
|
549 |
|
|
|
550 |
free ( in );
|
|
|
551 |
free ( in2 );
|
|
|
552 |
fftw_free ( out );
|
|
|
553 |
|
|
|
554 |
return;
|
|
|
555 |
}
|
|
|
556 |
//*****************************************************************************/
|
|
|
557 |
|
|
|
558 |
double frand ( void )
|
|
|
559 |
|
|
|
560 |
//*****************************************************************************/
|
|
|
561 |
/*
|
|
|
562 |
Purpose:
|
|
|
563 |
|
|
|
564 |
FRAND returns random values between 0 and 1.
|
|
|
565 |
|
|
|
566 |
Discussion:
|
|
|
567 |
|
|
|
568 |
The random seed can be set by a call to SRAND ( unsigned int ).
|
|
|
569 |
|
|
|
570 |
Note that Kernighan and Ritchie suggest using
|
|
|
571 |
|
|
|
572 |
( ( double ) rand ( ) / ( RAND_MAX + 1 ) )
|
|
|
573 |
|
|
|
574 |
but this seems to result in integer overflow for RAND_MAX + 1,
|
|
|
575 |
resulting in negative values for the random numbers.
|
|
|
576 |
|
|
|
577 |
Modified:
|
|
|
578 |
|
|
|
579 |
23 October 2005
|
|
|
580 |
|
|
|
581 |
Author:
|
|
|
582 |
|
|
|
583 |
John Burkardt
|
|
|
584 |
|
|
|
585 |
Reference:
|
|
|
586 |
|
|
|
587 |
Brian Kernighan, Dennis Ritchie,
|
|
|
588 |
The C Programming Language,
|
|
|
589 |
Prentice Hall, 1988.
|
|
|
590 |
|
|
|
591 |
Parameters:
|
|
|
592 |
|
|
|
593 |
Output, double FRAND, a random value between 0 and 1.
|
|
|
594 |
*/
|
|
|
595 |
{
|
|
|
596 |
double value;
|
|
|
597 |
|
|
|
598 |
value = ( ( double ) rand ( ) / ( RAND_MAX ) );
|
|
|
599 |
|
|
|
600 |
return value;
|
|
|
601 |
}
|
|
|
602 |
//*****************************************************************************/
|
|
|
603 |
|
|
|
604 |
void timestamp ( void )
|
|
|
605 |
|
|
|
606 |
/******************************************************************************/
|
|
|
607 |
/*
|
|
|
608 |
Purpose:
|
|
|
609 |
|
|
|
610 |
TIMESTAMP prints the current YMDHMS date as a time stamp.
|
|
|
611 |
|
|
|
612 |
Example:
|
|
|
613 |
|
|
|
614 |
31 May 2001 09:45:54 AM
|
|
|
615 |
|
|
|
616 |
Modified:
|
|
|
617 |
|
|
|
618 |
24 September 2003
|
|
|
619 |
|
|
|
620 |
Author:
|
|
|
621 |
|
|
|
622 |
John Burkardt
|
|
|
623 |
|
|
|
624 |
Parameters:
|
|
|
625 |
|
|
|
626 |
None
|
|
|
627 |
*/
|
|
|
628 |
{
|
|
|
629 |
# define TIME_SIZE 40
|
|
|
630 |
|
|
|
631 |
static char time_buffer[TIME_SIZE];
|
|
|
632 |
const struct tm *tm;
|
|
|
633 |
size_t len;
|
|
|
634 |
time_t now;
|
|
|
635 |
|
|
|
636 |
now = time ( NULL );
|
|
|
637 |
tm = localtime ( &now );
|
|
|
638 |
|
|
|
639 |
len = strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm );
|
|
|
640 |
|
|
|
641 |
printf ( "%s\n", time_buffer );
|
|
|
642 |
|
|
|
643 |
return;
|
|
|
644 |
# undef TIME_SIZE
|
|
|
645 |
}
|